Exercise 1.5.13

Determine the steady-state temperature distribution between two concentric spheres with radii 1 and 4 , respectively, if the temperature of the outer sphere is maintained at 80° and the inner sphere at 0° (see Exercise 1.5.12).

Solution

The governing equation for the temperature between the two spheres, assuming radial symmetry, is

$$
\frac{\partial u}{\partial t}=\frac{k}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right), \quad 1 \leq r \leq 4 .
$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of r now.

$$
0=\frac{k}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d u}{d r}\right) \quad \rightarrow \quad \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d u}{d r}\right)=0
$$

To solve the differential equation, multiply both sides by r^{2}.

$$
\frac{d}{d r}\left(r^{2} \frac{d u}{d r}\right)=0
$$

Integrate both sides with respect to r.

$$
r^{2} \frac{d u}{d r}=C_{1}
$$

Divide both sides by r^{2}.

$$
\frac{d u}{d r}=\frac{C_{1}}{r^{2}}
$$

Integrate both sides with respect to r once more.

$$
u(r)=-\frac{C_{1}}{r}+C_{2}
$$

Now we apply the two boundary conditions to determine C_{1} and C_{2} :

$$
\begin{aligned}
& u(r=1)=-C_{1}+C_{2}=0 \\
& u(r=4)=-\frac{C_{1}}{4}+C_{2}=80
\end{aligned}
$$

Solving this system of equations yields $C_{1}=320 / 3$ and $C_{2}=320 / 3$. Therefore, the steady-state temperature distribution is

$$
u(r)=\frac{320}{3}\left(1-\frac{1}{r}\right) .
$$

